Surface Structures of Cationic Surfactant Monolayer on Solid Substrate: A Sum Frequency Generation (SFG) Study

Hujin Liu†, Yujin Tong†, Aimin Ge†, Keigo Suzuki‡, Takaya Sakai‡, Masatoshi Osaka†, and Shen Ye†,§,*

†Catalysis Research Center (CRC), Hokkaido University, Sapporo, Japan; ‡Kao Corporation, Wakayama, Japan; § PRESTO, Japan Science and Technology Agency (JST)

Surfactants play important roles in a variety of technological processes such as detergency, emulsification, coating, lubrication, mineral flotation, and oil recovery.1,2 Dioctadecyldimethyl ammonium bromide (DODAB) is a synthetic cationic surfactant with a polar ammonium group and two long hydrophobic alkyl chains, which is widely used in detergent industry as a softening agent but is hard to be decomposed in nature environments. Many efforts have been made to develop new type of surfactants for this purpose.

In the present study, π-Å isotherm and SFG vibrational spectroscopy have been applied to study the surface structures for monolayers of a number of cationic surfactants. SFG is known as a surface specific technique with a unique sensitivity to alkyl chain conformation and ordering/disordering.3-5 Figure 1 shows a SFG spectrum of DODAB monolayer deposited on a fused quartz surface by LB method with a surface pressure of 20 mN/m. Two peaks at 2876 and 2941 cm⁻¹ can be attributed to symmetric and Fermi resonance of C-H stretching of terminal CH₃ group, respectively, while that at 2850 cm⁻¹ can be attributed to symmetric C-H stretching of CH₂ group. Since the SFG signals from the CH₂ groups in the alkyl chains are forbidden in an all-trans conformation, appearance of SFG peak from CH₂ group in the spectrum indicates that some gauche defects present in the monolayer, which is considered as a result of strong repulsive interaction between terminal ammonium groups between DODAB molecules in the monolayer. The ratio of SFG intensity of CH₂ group \([v_s(CH_2)]\) to the CH₃ group \([v_s(CH_3)]\), which can be regard as an indicator of disordering in the monolayer, decrease with exposure to air. This suggests improvement of chain ordering and a reconstruction process should occur in the process. Detailed results and discussions will be given in the poster presentation.

2) Sharma, R.; Ed. Surfactant Adsorption and Surface Solubilization; ACS symp. Ser. No. 615; American Chemical Society: Waxhington DC, 1995
3) Shen, Y. R., Ostroverkhov, V. Chem. Rev. 2006, 106, 1140
Name: Huijin Liu

1998.9 ~2002.7 B. Eng., Department of Chemistry, Gannan Normal University, China.
2002.9 ~2008.3 Ph.D. candidate, School of Chemistry and Chemical Engineering, Nanjing University, China.
2008.4~ present Postdoctoral, Catalysis Research Center, Hokkaido University, Japan.

Recent Publication
1. Determination of Chain Orientation in the Monolayers of Amino-Acid-Derived Schiff Base at the Air–Water Interface Using in Situ Infrared Reflection Absorption Spectroscopy
3. Chain Orientation and Headgroup Structure in Langmuir Monolayers of Stearic Acid and Metal Stearate (Ag, Co, Zn, and Pb) Studied by Infrared Reflection-Absorption Spectroscopy
4. In Situ Studies of Metal Coordinations and Molecular Orientations in Monolayers of Amion-Acid-Derived Schiff Bases at the Air-Water Interface